Azithromycin in gynecological infections antioxidants


  • Al-Rasheed NM, Al-Rasheed NM, Bassiouni YA et al (2015) Vitamin D attenuates pro-inflammatory TNF-alpha cytokine expression by inhibiting NF-small ka, CyrillicB/p65 signaling in hypertrophied rat hearts. J Physiol Biochem 71:289–299PubMedCrossRefGoogle Scholar

  • Ambegaokar SS, Kolson DL (2014) Heme oxygenase-1 dysregulation in the brain: implications for HIV-associated neurocognitive disorders. Curr HIV Res 12:174PubMedPubMedCentralCrossRefGoogle Scholar

  • Anderson I, Low JS, Weston S et al (2014) Heat shock protein 90 controls HIV-1 reactivation from latency. Proc Natl Acad Sci USA 111:E1528–E1537PubMedPubMedCentralCrossRefGoogle Scholar

  • Annunziata CM, Stavnes HT, Kleinberg L et al (2010) Nuclear factor kappaB transcription factors are coexpressed and convey a poor outcome in ovarian cancer. Cancer 116:3276–3284PubMedPubMedCentralCrossRefGoogle Scholar

  • Balakumar P, Singh M (2006) Anti-tumour necrosis factor-alpha therapy in heart failure: future directions. Basic Clin Pharmacol Toxicol 99:391–397PubMedCrossRefGoogle Scholar

  • Balch WE, Sznajder JI, Budinger S et al (2014) Misfolded protein structure and proteostasis in lung diseases. Am J Respir Crit Care Med 189:96–103PubMedPubMedCentralGoogle Scholar

  • Baltimore D (2009) Discovering NF-kappaB. Cold Spring Harb Perspect Biol 1:a000026PubMedPubMedCentralCrossRefGoogle Scholar

  • Barnes PJ (2015) Therapeutic approaches to asthma-chronic obstructive pulmonary disease overlap syndromes. J Allergy Clin Immunol 136:531–545PubMedCrossRefGoogle Scholar

  • Benezra M, Chevallier N, Morrison DJ et al (2003) BRCA1 augments transcription by the NF-kappaB transcription factor by binding to the Rel domain of antioxidants the p65/RelA subunit. J Biol Chem 278:26333–26341PubMedCrossRefGoogle Scholar

  • Birrell MA, Hardaker E, Wong S et al (2005) Ikappa-B kinase-2 inhibitor blocks inflammation in human airway smooth muscle and a rat model of asthma. Am J Respir Crit Care Med 172:962–971PubMedCrossRefGoogle Scholar

  • Biswas DK, Cruz AP, Gansberger E et al (2000) Epidermal growth factor-induced nuclear factor κB activation: a major pathway of cell-cycle progression in estrogen-receptor negative breast cancer cells. Proc Natl Acad Sci USA 97:8542–8547PubMedPubMedCentralCrossRefGoogle Scholar

  • Biswas DK, Shi Q, Baily S et al (2004) NF-kappa B activation in human breast cancer specimens and its role in cell proliferation and apoptosis. Proc Natl Acad Sci USA 101:10137–10142PubMedPubMedCentralCrossRefGoogle Scholar

  • Bonizzi G, Piette J, Schoonbroodt S et al (1999) Reactive oxygen intermediate-dependent NF-kappaB activation by interleukin-1beta requires 5-lipoxygenase or NADPH oxidase activity. Mol Cell Biol 19:1950–1960PubMedPubMedCentralCrossRefGoogle Scholar

  • Bosnjak L, Miranda-Saksena M, Koelle DM et al (2005) Herpes simplex virus infection of human dendritic cells induces apoptosis and allows cross-presentation via uninfected dendritic cells. J Immunol 174:2220–2227PubMedCrossRefGoogle Scholar

  • Bourdillon MC, Poston RN, Covacho C et al (2000) ICAM-1 deficiency reduces atherosclerotic lesions in double-knockout mice (ApoE(−/−)/ICAM-1(−/−)) fed a fat or a chow diet. Arterioscler Thromb Vasc Biol 20:2630–2635PubMedCrossRefGoogle Scholar

  • Branen L, Hovgaard L, Nitulescu M et al (2004) Inhibition of tumor necrosis factor-alpha reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 24:2137–2142PubMedCrossRefGoogle Scholar

  • Brar SS, Kennedy TP, Sturrock AB et al (2002) NADPH oxidase promotes NF-kappaB activation and proliferation in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 282:L782–L795PubMedCrossRefGoogle Scholar

  • Brown LA, Scarola J, Smith AJ et al (2014) The role of tau protein in HIV-associated neurocognitive disorders. Mol Neurodegener 9:40PubMedPubMedCentralCrossRefGoogle Scholar

  • Brubaker SW, Bonham KS, Zanoni I et al (2015) Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol 33:257–290PubMedCrossRefGoogle Scholar

  • Cai W, Schaffer PA (1992) Herpes simplex virus type 1 ICP0 regulates expression of immediate-early, early, and late genes in productively infected cells. J Virol 66:2904–2915PubMedPubMedCentralGoogle Scholar

  • Cazzola M, Calzetta L, Page C et al (2015) Influence of N-acetylcysteine on chronic bronchitis or COPD exacerbations: a meta-analysis. Eur Respir Rev 24:451–461PubMedCrossRefGoogle Scholar

  • Ceconi C, Boraso A, Cargnoni A et al (2003) Oxidative stress in cardiovascular disease: myth or fact? Arch Biochem Biophys 420:217–221PubMedCrossRefGoogle Scholar

  • Chen W, Li Z, Bai L et al (2011) NF-kappaB in lung cancer, a carcinogenesis mediator and a prevention and therapy target. Front Biosci 16:1172–1185CrossRefGoogle Scholar

  • Chen YJ, Yeh MH, Yu MC et al (2013) Lapatinib–induced NF-kappaB activation sensitizes triple-negative breast cancer cells to proteasome inhibitors. Breast Cancer Res 15:R108PubMedPubMedCentralCrossRefGoogle Scholar

  • Chen Y, Wang H, Luo G et al (2014) SIRT4 inhibits cigarette smoke extracts-induced mononuclear cell adhesion to human pulmonary microvascular endothelial cells via regulating NF-κB activity. Toxicol Lett 226:320–327PubMedCrossRefGoogle Scholar

  • Cherry EM, Lee DW, Jung JU et al (2015) Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) promotes glioma cell invasion through induction of NF-κB-inducing kinase (NIK) and noncanonical NF-κB signaling. Mol Cancer 14:9PubMedPubMedCentralCrossRefGoogle Scholar

  • Clark RA, Valente AJ (2004) Nuclear factor kappa B activation by NADPH oxidases. Mech Ageing Dev 125:799–810PubMedCrossRefGoogle Scholar

  • Cogswell PC, Guttridge DC, Funkhouser WK et al (2000) Selective activation of NF-kappa B subunits in human breast cancer: potential roles for NF-kappa B2/p52 and for Bcl-3. Oncogene 19:1123–1131PubMedCrossRefGoogle Scholar

  • Collins RG, Velji R, Guevara NV et al (2000) P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J Exp Med 191:189–194PubMedPubMedCentralCrossRefGoogle Scholar

  • Connelly L, Robinson-Benion C, Chont M et al (2007) A transgenic model reveals important roles for the NF-κB alternative pathway (p100/p52) in mammary development and links to tumorigenesis. J Biol Chem 282:10028–10035PubMedCrossRefGoogle Scholar

  • Courtois G, Whiteside ST, Sibley CH et al (1997) Characterization of a mutant cell line that does not activate NF-kappaB in response to multiple stimuli. Mol Cell Biol 17:1441–1449PubMedPubMedCentralCrossRefGoogle Scholar

  • Cramer DW, Welch WR (1983) Determinants of ovarian cancer risk. II. Inferences regarding pathogenesis. J Natl Cancer Inst 71:717–721PubMedGoogle Scholar

  • Cusack JC Jr, Liu R, Houston M et al (2001) Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res 61:3535–3540PubMedGoogle Scholar

  • Dahabieh MS, Battivelli E, Verdin E (2015) Understanding HIV latency: the road to an HIV cure. Annu Rev Med 66:407–421PubMedPubMedCentralCrossRefGoogle Scholar

  • Dahiya S, Liu Y, Nonnemacher MR et al (2014a) CCAAT enhancer binding protein and nuclear factor of activated T cells regulate HIV-1 LTR via a novel conserved downstream site in cells of the monocyte-macrophage lineage. PLoS One 9:e88116PubMedPubMedCentralCrossRefGoogle Scholar

  • Dahiya S, Liu Y, Williams J et al (2014b) Role of downstream elements in transcriptional regulation of the HIV-1 promoter. J Hum Virol Retrovirol 1:00006Google Scholar

  • de Winther MP, Kanters E, Kraal G et al (2005) Nuclear factor kappaB signaling in atherogenesis. Arterioscler Thromb Vasc Biol 25:904–914PubMedCrossRefGoogle Scholar

  • Dejardin E, Bonizzi G, Bellahcene A et al (1995) Highly-expressed p100/p52 (NFKB2) sequesters other NF-kappa B-related proteins in the cytoplasm of human breast cancer cells. Oncogene 11:1835–1841PubMedGoogle Scholar

  • Delerive P, De Bosscher K, Besnard S et al (1999) Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. J Biol Chem 274:32048–32054PubMedCrossRefGoogle Scholar

  • Deng J, Lu PD, Zhang Y et al (2004) Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol Cell Biol 24:10161–10168PubMedPubMedCentralCrossRefGoogle Scholar

  • Dhalla NS, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18:655–673PubMedCrossRefGoogle Scholar

  • Di Stefano A, Caramori G, Gnemmi I et al (2009) T helper type 17-related cytokine expression is increased in the bronchial mucosa of stable chronic obstructive pulmonary disease patients. Clin Exp Immunol 157:316–324PubMedPubMedCentralCrossRefGoogle Scholar

  • Doyle KL, Loft S, Morgan EE et al (2013) Prospective memory in HIV-associated neurocognitive disorders (HAND): the neuropsychological dynamics of time monitoring. J Clin Exp Neuropsychol 35:359–372PubMedPubMedCentralCrossRefGoogle Scholar

  • Edwards MR, Bartlett NW, Clarke D et al (2009) Targeting the NF-kappaB pathway in asthma and chronic obstructive pulmonary disease. Pharmacol Ther 121:1–13PubMedCrossRefGoogle Scholar

  • Egan KP, Wu S, Wigdahl B et al (2013) Immunological control of herpes simplex virus infections. J Neurovirol 19:328–345PubMedPubMedCentralCrossRefGoogle Scholar

  • Gangwani MR, Noel RJ Jr, Shah A et al (2013) Human immunodeficiency virus type 1 viral protein R (Vpr) induces CCL5 expression in astrocytes via PI3 K and MAPK signaling pathways. J Neuroinflammation 10:136PubMedPubMedCentralCrossRefGoogle Scholar

  • Gilmore TD (2006) Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25:6680–6684PubMedCrossRefGoogle Scholar

  • Gilowska I (2014) CXCL8 (interleukin 8)—the key inflammatory mediator in chronic obstructive pulmonary disease? Postepy Hig Med Dosw (Online) 68:842–850CrossRefGoogle Scholar

  • Goodkin ML, Ting AT, Blaho JA (2003) NF-kappaB is required for apoptosis prevention during herpes simplex virus type 1 infection. J Virol 77:7261–7280PubMedPubMedCentralCrossRefGoogle Scholar

  • Grilli M, Memo M (1999) Possible role of NF-kappaB and p53 in the glutamate-induced pro-apoptotic neuronal pathway. Cell Death Differ 6:22–27PubMedCrossRefGoogle Scholar

  • Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899PubMedPubMedCentralCrossRefGoogle Scholar

  • Guo F, Li J, Du W et al (2013) mTOR regulates DNA damage response through NF-kappaB-mediated FANCD2 pathway in hematopoietic cells. Leukemia 27:2040–2046PubMedPubMedCentralCrossRefGoogle Scholar

  • Guo H, Gao J, Taxman DJ et al (2014) HIV-1 infection induces interleukin-1β production via TLR8 protein-dependent and NLRP3 inflammasome mechanisms in human monocytes. J Biol Chem 289:21716–21726PubMedPubMedCentralCrossRefGoogle Scholar

  • Gupta A, Grove A (2014) Ligand-binding pocket bridges DNA-binding and dimerization domains of the urate-responsive MarR homologue MftR from Burkholderia thailandensis. Biochemistry 53:4368–4380PubMedPubMedCentralCrossRefGoogle Scholar

  • Hada M, Mizutari K (2004) A case of advanced pancreatic cancer with remarkable response to thalidomide, celecoxib and gemcitabine. Cancer Chemother 31:959–961Google Scholar

  • Hadigal SR, Agelidis AM, Karasneh GA et al (2015) Heparanase is a host enzyme required for herpes simplex virus-1 release from cells. Nat Commun 6:6985PubMedPubMedCentralCrossRefGoogle Scholar

  • Hargett D, Rice S, Bachenheimer SL (2006) Herpes simplex virus type 1 ICP27-dependent activation of NF-kappaB. J Virol 80:10565–10578PubMedPubMedCentralCrossRefGoogle Scholar

  • Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes Dev 18:2195–2224PubMedCrossRefGoogle Scholar

  • Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362PubMedCrossRefGoogle Scholar

  • Heaton RK, Franklin DR, Ellis RJ et al (2011) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol 17:3–16PubMedCrossRefGoogle Scholar

  • Heinemann V, Wilke H, Mergenthaler HG et al (2000) Gemcitabine and cisplatin in the treatment of advanced or metastatic pancreatic cancer. Ann Oncol 11:1399–1403PubMedCrossRefGoogle Scholar

  • Hernandez-Gutierrez S, Garcia-Pelaez I, Zentella-Dehesa A et al (2006) NF-kappaB signaling blockade by Bay 11-7085 during early cardiac morphogenesis induces alterations of the outflow tract in chicken heart. Apoptosis 11:1101–1109PubMedCrossRefGoogle Scholar

  • Hoffmann A, Baltimore D (2006) Circuitry of nuclear factor kappaB signaling. Immunol Rev 210:171–186PubMedCrossRefGoogle Scholar

  • Hollander W (1976) Role of hypertension in atherosclerosis and cardiovascular disease. Am J Cardiol 38:786–800PubMedCrossRefGoogle Scholar

  • Hung PY, Ho BC, Lee SY et al (2015) Houttuynia cordata targets the beginning stage of herpes simplex virus infection. PLoS One 10:e0115475PubMedPubMedCentralCrossRefGoogle Scholar

  • Hutchinson KR, Stewart JA Jr, Lucchesi PA (2010) Extracellular matrix remodeling during the progression of volume overload-induced heart failure. J Mol Cell Cardiol 48:564–569PubMedCrossRefGoogle Scholar

  • Israel A (2010) The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol 2:a000158PubMedPubMedCentralCrossRefGoogle Scholar

  • Ito K, Yamamura S, Essilfie-Quaye S et al (2006) Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-kappaB suppression. J Exp Med 203:7–13PubMedPubMedCentralCrossRefGoogle Scholar

  • Jansen F, Yang X, Nickenig G et al (2015) Role, function and therapeutic potential of microRNAs in vascular aging. Curr Vasc Pharmacol 13:324–330PubMedCrossRefGoogle Scholar

  • Janssen-Heininger YM, Poynter ME, Aesif SW et al (2009) Nuclear factor kappaB, airway epithelium, and asthma: avenues for redox control. Proc Am Thorac Soc 6:249–255PubMedPubMedCentralCrossRefGoogle Scholar

  • Janssens S, Tschopp J (2006) Signals from within: the DNA-damage-induced NF-kappaB response. Cell Death Differ 13:773–784PubMedCrossRefGoogle Scholar

  • Jemal A, Siegel R, Ward E et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96PubMedCrossRefGoogle Scholar

  • Jimeno A, Amador ML, Kulesza P et al (2006) Assessment of celecoxib pharmacodynamics in pancreatic cancer. Mol Cancer Ther 5:3240–3247PubMedCrossRefGoogle Scholar

  • Joyce D, Albanese C, Steer J et al (2001) NF-kappaB and cell-cycle regulation: the cyclin connection. Cytokine Growth Factor Rev 12:73–90PubMedCrossRefGoogle Scholar

  • Kang JH, Hwang SM, Chung IY (2015) S100A8, S100A9 and S100A12 activate airway epithelial cells to produce MUC5AC via extracellular signal-regulated kinase and nuclear factor-κB pathways. Immunology 144:79–90PubMedCrossRefGoogle Scholar

  • Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436PubMedCrossRefGoogle Scholar

  • Karin M (2009) NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol 1:a000141PubMedPubMedCentralCrossRefGoogle Scholar

  • Karn J, Stoltzfus CM (2012) Transcriptional and posttranscriptional regulation of HIV-1 gene expression. Cold Spring Harb Perspect Med 2:a006916PubMedPubMedCentralCrossRefGoogle Scholar

  • Kedzierska K, Crowe SM (2001) Cytokines and HIV-1: interactions and clinical implications. Antivir Chem Chemother 12:133–150PubMedCrossRefGoogle Scholar

  • Kniss DA, Rovin B, Fertel RH et al (2001) Blockade NF-kappaB activation prohibits TNF-alpha-induced cyclooxygenase-2 gene expression in ED27 trophoblast-like cells. Placenta 22:80–89PubMedCrossRefGoogle Scholar

  • Kumar S, Mabalirajan U, Rehman R et al (2013) A novel cinnamate derivative attenuates asthma features and reduces bronchial epithelial injury in mouse model. Int Immunopharmacol 15:150–159PubMedCrossRefGoogle Scholar

  • Lassegue B, San Martin A, Griendling KK (2012) Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res 110:1364–1390PubMedPubMedCentralCrossRefGoogle Scholar

  • Lee EJ, Gusev Y, Jiang J et al (2007) Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 120:1046–1054PubMedPubMedCentralCrossRefGoogle Scholar

  • Lemmers B, Salmena L, Bidere N et al (2007) Essential role for caspase-8 in Toll-like receptors and NFkappaB signaling. J Biol Chem 282:7416–7423PubMedCrossRefGoogle Scholar

  • Leoni V, Gianni T, Salvioli S et al (2012) Herpes simplex virus glycoproteins gH/gL and gB bind Toll-like receptor 2, and soluble gH/gL is sufficient to activate NF-κB. J Virol 86:6555–6562PubMedPubMedCentralCrossRefGoogle Scholar

  • Li Q, Verma IM (2002) NF-kappaB regulation in the immune system. Nat Rev Immunol 2:725–734PubMedCrossRefGoogle Scholar

  • Li J, Zhao F (2015) Anti-inflammatory functions of Thunb. and its compounds: a perspective on its potential role in rheumatoid arthritis. Exp Ther Med 10:3–6PubMedPubMedCentralGoogle Scholar

  • Li YY, Feng YQ, Kadokami T et al (2000) Myocardial extracellular matrix remodeling in transgenic mice overexpressing tumor necrosis factor alpha can be modulated by anti-tumor necrosis factor alpha therapy. Proc Natl Acad Sci USA 97:12746–12751PubMedPubMedCentralCrossRefGoogle Scholar

  • Li D, Xie K, Wolff R et al (2004) Pancreatic cancer. Lancet 363:1049–1057PubMedCrossRefGoogle Scholar

  • Li J, Luo L, Wang X et al (2009) Inhibition of NF-kappaB expression and allergen-induced airway inflammation in a mouse allergic asthma model by andrographolide. Cell Mol Immunol 6:381–385PubMedPubMedCentralCrossRefGoogle Scholar

  • Liu H, Chen K, Feng W et al (2013) TLR4-MyD88/Mal-NF-κB axis is involved in infection of HSV-2 in human cervical epithelial cells. PLoS One 8:e80327PubMedPubMedCentralCrossRefGoogle Scholar

  • Lo M, Ling V, Low C et al (2010) Potential use of the anti-inflammatory drug, sulfasalazine, for targeted therapy of pancreatic cancer. Curr Oncol 17:9PubMedPubMedCentralGoogle Scholar

  • Loehrer PJ, Feng Y, Cardenes H et al (2011) Gemcitabine alone versus gemcitabine plus radiotherapy in patients with locally advanced pancreatic cancer: an Eastern Cooperative Oncology Group trial. J Clin Oncol 29:4105–4112PubMedPubMedCentralCrossRefGoogle Scholar

  • Lu Z, Li Y, Takwi A et al (2011) miR-301a as an NF-kappaB activator in pancreatic cancer cells. EMBO J 30:57–67PubMedCrossRefGoogle Scholar

  • Lu M, Tang F, Zhang J et al (2015) Astragaloside IV attenuates injury caused by myocardial ischemia/reperfusion in rats via regulation of toll-like receptor 4/nuclear factor-kappaB signaling pathway. Phytother Res 29:599–606PubMedCrossRefGoogle Scholar

  • Luo JL, Maeda S, Hsu LC et al (2004) Inhibition of NF-kappaB in cancer cells converts inflammation- induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell 6:297–305PubMedCrossRefGoogle Scholar

  • Ma X, Becker Buscaglia LE, Barker JR et al (2011) MicroRNAs in NF-kappaB signaling. J Mol Cell Biol 3:159–166PubMedPubMedCentralCrossRefGoogle Scholar

  • Mabb AM, Wuerzberger-Davis SM, Miyamoto S (2006) PIASy mediates NEMO sumoylation and NF-kappaB activation in response to genotoxic stress. Nat Cell Biol 8:986–993PubMedCrossRefGoogle Scholar

  • Madrigal-Matute J, Rotllan N, Aranda JF et al (2013) MicroRNAs and atherosclerosis. Curr Atheroscler Rep 15:322PubMedPubMedCentralCrossRefGoogle Scholar

  • Mammen MJ, Sethi S (2012) Macrolide therapy for the prevention of acute exacerbations in chronic obstructive pulmonary disease. Pol Arch Med Wewn 122:54–59PubMedGoogle Scholar

  • Mandai M, Yamaguchi K, Matsumura N et al (2009) Ovarian cancer in endometriosis: molecular biology, pathology, and clinical management. Int J Clin Oncol 14:383–391PubMedCrossRefGoogle Scholar

  • Marcelletti JF (2002) Synergistic inhibition of herpesvirus replication by docosanol and antiviral nucleoside analogs. Antiviral Res 56:153–166PubMedCrossRefGoogle Scholar

  • McArthur JC, Brew BJ (2010) HIV-associated neurocognitive disorders: is there a hidden epidemic? AIDS 24:1367–1370PubMedCrossRefGoogle Scholar

  • McCool KW, Miyamoto S (2012) DNA damage-dependent NF-kappaB activation: NEMO turns nuclear signaling inside out. Immunol Rev 246:311–326PubMedPubMedCentralCrossRefGoogle Scholar

  • Meng Y, Yu CH, Li T et al (2013) Expression and significance of Toll-like receptor-4 in rats lung established by passive smoking or associated with intratracheal instillation of lipopolysaccharide. Zhonghua Yi Xue Za Zhi 93:2230–2234PubMedGoogle Scholar

  • Min T, Bodas M, Mazur S et al (2011) Critical role of proteostasis-imbalance in pathogenesis of COPD and severe emphysema. J Mol Med 89:577–593PubMedPubMedCentralCrossRefGoogle Scholar

  • Mitsiades CS, McMillin D, Kotoula V et al (2006) Antitumor effects of the proteasome inhibitor bortezomib in medullary and anaplastic thyroid carcinoma cells in vitro. J Clin Endocrinol Metab 91:4013–4021PubMedCrossRefGoogle Scholar

  • Mogensen TH, Paludan SR (2001) Molecular pathways in virus-induced cytokine production. Microbiol Mol Biol Rev 65:131–150PubMedPubMedCentralCrossRefGoogle Scholar

  • Moutzouris JP, Che W, Ramsay EE et al (2010) Proteasomal inhibition upregulates the endogenous MAPK deactivator MKP-1 in human airway smooth muscle: mechanism of action and effect on cytokine secretion. Biochim Biophys Acta 1803:416–423PubMedCrossRefGoogle Scholar

  • Mutlu GM, Budinger GR, Wu M et al (2012) Proteasomal inhibition after injury prevents fibrosis by modulating TGF-β1 signalling. Thorax 67:139–146PubMedCrossRefGoogle Scholar

  • Nakashima Y, Raines EW, Plump AS et al (1998) Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler Thromb Vasc Biol 18:842–851PubMedCrossRefGoogle Scholar

  • Nam NH (2006) Naturally occurring NF-kappaB inhibitors. Mini Rev Med Chem 6:945–951PubMedCrossRefGoogle Scholar

  • Namba H, Saenko V, Yamashita S (2007) Nuclear factor-κB in thyroid carcinogenesis and progression: a novel therapeutic target for advanced thyroid cancer. Arq Bras Endocrinol Metab 51:843–851CrossRefGoogle Scholar

  • Nelson G, Wilde GJ, Spiller DG et al (2003) NF-kappaB signalling is inhibited by glucocorticoid receptor and STAT6 via distinct mechanisms. J Cell Sci 116(Pt 12):2495–2503PubMedCrossRefGoogle Scholar

  • Nishina T, Yamaguchi N, Gohda J et al (2009) NIK is involved in constitutive activation of the alternative NF-κB pathway and proliferation of pancreatic cancer cells. Biochem Biophys Res Commun 388:96–101PubMedCrossRefGoogle Scholar

  • Nitecki SS, Sarr MG, Colby TV et al (1995) Long-term survival after resection for ductal adenocarcinoma of the pancreas. Is it really improving? Ann Surg 221:59PubMedPubMedCentralCrossRefGoogle Scholar

  • Niu J, Wang K, Graham S et al (2011) MCP-1-induced protein attenuates endotoxin-induced myocardial dysfunction by suppressing cardiac NF-small ka, CyrillicB activation via inhibition of Ismall ka, Cyrillic B kinase activation. J Mol Cell Cardiol 51:177–186PubMedCrossRefGoogle Scholar

  • Omur O, Baran Y (2014) An update on molecular biology of thyroid cancers. Crit Rev Oncol Hematol 90:233–252PubMedCrossRefGoogle Scholar

  • Osorio FG, Lopez-Otin C, Freije JM (2012) NF-κB in premature aging. Aging 4:726–727PubMedPubMedCentralCrossRefGoogle Scholar

  • Pacifico F, Mauro C, Barone C et al (2004) Oncogenic and anti-apoptotic activity of NF-κB in human thyroid carcinomas. J Biol Chem 279:54610–54619PubMedCrossRefGoogle Scholar

  • Palona I, Namba H, Mitsutake N et al (2006) BRAFV600E promotes invasiveness of thyroid cancer cells through nuclear factor κB activation. Endocrinology 147:5699–5707PubMedCrossRefGoogle Scholar

  • Panday A, Grove A (2016) The high mobility group protein HMO1 functions as a linker histone in yeast. Epigenetics Chromatin 9:13PubMedPubMedCentralCrossRefGoogle Scholar

  • Panday A, Sahoo MK, Osorio D et al (2015a) NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 12:5–23PubMedCrossRefGoogle Scholar

  • Panday A, Xiao L, Grove A (2015b) Yeast high mobility group protein HMO1 stabilizes chromatin and is evicted during repair of DNA double strand breaks. Nucleic Acids Res 43:5759–5770PubMedPubMedCentralCrossRefGoogle Scholar

  • Parker SL, Tong T, Bolden S et al (1997) Cancer statistics, 1997. CA Cancer J Clin 47:5–27PubMedCrossRefGoogle Scholar

  • Pavese JM, Farmer RL, Bergan RC (2010) Inhibition of cancer cell invasion and metastasis by genistein. Cancer Metastasis Rev 29:465–482PubMedPubMedCentralCrossRefGoogle Scholar

  • Pierce JW, Read MA, Ding H et al (1996) Salicylates inhibit I kappa B-alpha phosphorylation, endothelial-leukocyte adhesion molecule expression, and neutrophil transmigration. J Immunol 156:3961–3969PubMedGoogle Scholar

  • Piret J, Boivin G (2011) Resistance of herpes simplex viruses to nucleoside analogues: mechanisms, prevalence, and management. Antimicrob Agents Chemother 55:459–472PubMedCrossRefGoogle Scholar

  • Rastrick J, Stevenson CS, Eltom S et al (2013) Cigarette smoke induced airway inflammation is independent of NF-κB signalling. PLoS One 8:e54128PubMedPubMedCentralCrossRefGoogle Scholar

  • Rico-Rosillo G, Vega-Robledo GB (2011) The involvement of NF-?B Transcription factor in asthma. Rev Alerg Mex 58:107–111PubMedGoogle Scholar

  • Rooney JW, Emery DW, Sibley CH (1990) 1.3E2, a variant of the B lymphoma 70Z/3, defective in activation of NF-kappa B and OTF-2. Immunogenetics 31:73–78PubMedCrossRefGoogle Scholar

  • Roth M, Black JL (2006) Transcription factors in asthma: are transcription factors a new target for asthma therapy? Curr Drug Targets 7:589–595PubMedCrossRefGoogle Scholar

  • Sanguinetti CM (2015) N-acetylcysteine in COPD: why, how, and when? Multidiscip Respir Med 11:8PubMedCrossRefGoogle Scholar

  • Sethi G, Ahn K, Chaturvedi M et al (2007) Epidermal growth factor (EGF) activates nuclear factor-κB through IκBα kinase-independent but EGF receptor-kinase dependent tyrosine 42 phosphorylation of IκBα. Oncogene 26:7324–7332PubMedCrossRefGoogle Scholar

  • Setia S, Nehru B, Sanyal SN (2014) Activation of NF-κB: bridging the gap between inflammation and cancer in colitis-mediated colon carcinogenesis. Biomed Pharmacother 68:119–128PubMedCrossRefGoogle Scholar

  • Shah A, Kumar A (2010) HIV-1 gp120-mediated increases in IL-8 production in astrocytes are mediated through the NF-kappaB pathway and can be silenced by gp120-specific siRNA. J Neuroinflamm 7:96CrossRefGoogle Scholar

  • Shah A, Verma AS, Patel KH et al (2011) HIV-1 gp120 induces expression of IL-6 through a nuclear factor-kappa B-dependent mechanism: suppression by gp120 specific small interfering RNA. PLoS One 6:e21261PubMedPubMedCentralCrossRefGoogle Scholar

  • Sharma A, Menche J, Huang C et al (2015) A disease module in the interactome explains disease heterogeneity, drug response and captures novel pathways and genes. Hum Mol Genet 24:3005–3020PubMedPubMedCentralCrossRefGoogle Scholar

  • Shimizu K, Konno S, Ozaki M et al (2012) Dehydroxymethylepoxyquinomicin (DHMEQ), a novel NF-kappaB inhibitor, inhibits allergic inflammation and airway remodelling in murine models of asthma. Clin Exp Allergy 42:1273–1281PubMedCrossRefGoogle Scholar

  • Shostak K, Chariot KS (2011) NF-κB, stem cells and breast cancer: the links get stronger. Breast Cancer Res 13:214PubMedPubMedCentralCrossRefGoogle Scholar

  • Spudich S, González-Scarano F (2012) HIV-1-related central nervous system disease: current issues in pathogenesis, diagnosis, and treatment. Cold Spring Harbor Perspect Med 2:a007120CrossRefGoogle Scholar

  • Staal J, Bekaert T, Beyaert R (2011) Regulation of NF-kappaB signaling by caspases and MALT1 paracaspase. Cell Res 21:40–54PubMedCrossRefGoogle Scholar

  • Stilmann M, Hinz M, Arslan SC et al (2009) A nuclear poly(ADP-ribose)-dependent signalosome confers DNA damage-induced IkappaB kinase activation. Mol Cell 36:365–378PubMedCrossRefGoogle Scholar

  • Tabruyn SP, Griffioen AW (2007) A new role for NF-[kappa]B in angiogenesis inhibition. Cell Death Differ 14:1393–1397PubMedCrossRefGoogle Scholar

  • Taddeo B, Zhang W, Lakeman F et al (2004) Cells lacking NF-kappaB or in which NF-kappaB is not activated vary with respect to ability to sustain herpes simplex virus 1 replication and are not susceptible to apoptosis induced by a replication-incompetent mutant virus. J Virol 78:11615–11621PubMedPubMedCentralCrossRefGoogle Scholar

  • Takahashi H, Ogata H, Nishigaki R et al (2010) Tobacco smoke promotes lung tumorigenesis by triggering IKKβ-and JNK1-dependent inflammation. Cancer Cell 17:89–97PubMedPubMedCentralCrossRefGoogle Scholar

  • Tiwari V, Tarbutton MS, Shukla D (2015) Diversity of heparan sulfate and HSV entry: basic understanding and treatment strategies. Molecules 20:2707–2727PubMedCrossRefGoogle Scholar

  • Tornatore L, Sandomenico A, Raimondo D et al (2014) Cancer-selective targeting of the NF-kappaB survival pathway with GADD45beta/MKK7 inhibitors. Cancer Cell 26:495–508PubMedPubMedCentralCrossRefGoogle Scholar

  • Tsukuda T, Fleming AB, Nickoloff JA et al (2005) Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature 438:379–383PubMedPubMedCentralCrossRefGoogle Scholar

  • Vallabhapurapu S, Karin M (2009) Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27:693–733PubMedCrossRefGoogle Scholar

  • Vij N (2008) AAA ATPase p97/VCP: cellular functions, disease and therapeutic potential. J Cell Mol Med 12:2511–2518PubMedPubMedCentralCrossRefGoogle Scholar

  • Visconti R, Cerutti J, Battista S et al (1997) Expression of the neoplastic phenotype by human thyroid carcinoma cell lines requires NFkB p65 protein expression. Oncogene 15:1987–1994PubMedCrossRefGoogle Scholar

  • Volcic M, Karl S, Baumann B et al (2012) NF-kappaB regulates DNA double-strand break repair in conjunction with BRCA1-CtIP complexes. Nucleic Acids Res 40:181–195PubMedCrossRefGoogle Scholar

  • Wahid F, Shehzad A, Khan T et al (2010) MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta 1803:1231–1243PubMedCrossRefGoogle Scholar

  • Wang X, Lin Y (2008) Tumor necrosis factor and cancer, buddies or foes&quest. Acta Pharmacol Sinica 29:1275–1288CrossRefGoogle Scholar

  • Wang C-Y, Mayo MW, Baldwin AS (1996) TNF-and cancer therapy-induced apoptosis: potentiation by inhibition of NF-κB. Science 274:784–787PubMedCrossRefGoogle Scholar

  • Wang W, Abbruzzese JL, Evans DB et al (1999) The nuclear factor-κB RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin Cancer Res 5:119–127PubMedGoogle Scholar

  • Wang H, Cao Q, Dudek AZ (2012) Phase II study of panobinostat and bortezomib in patients with pancreatic cancer progressing on gemcitabine-based therapy. Anticancer Res 32:1027–1031PubMedGoogle Scholar

  • Weng D, Marty-Roix R, Ganesan S et al (2014) Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. Proc Natl Acad Sci 111:7391–7396PubMedPubMedCentralCrossRefGoogle Scholar

  • Wharry CE, Haines KM, Carroll RG et al (2009) Constitutive noncanonical NFκB signaling in pancreatic cancer cells. Cancer Biol Ther 8:1567–1576PubMedPubMedCentralCrossRefGoogle Scholar

  • Wilson SJ, Wallin A, Della-Cioppa G et al (2001) Effects of budesonide and formoterol on NF-kappaB, adhesion molecules, and cytokines in asthma. Am J Respir Crit Care Med 164:1047–1052PubMedCrossRefGoogle Scholar

  • Wong WS, Leong KP (2004) Tyrosine kinase inhibitors: a new approach for asthma. Biochim Biophys Acta 1697:53–69PubMedCrossRefGoogle Scholar

  • Wong K, Jacks T, Dranoff G (2010) NF-kappaB fans the flames of lung carcinogenesis. Cancer Prev Res 3:403–405CrossRefGoogle Scholar

  • Wutzler P (1997) Antiviral therapy of herpes simplex and varicella-zoster virus infections. Intervirology 40:343–356PubMedCrossRefGoogle Scholar

  • Yamamoto Y, Gaynor RB (2001) Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest 107:135–142PubMedPubMedCentralCrossRefGoogle Scholar

  • Yamaoka S, Courtois G, Bessia C et al (1998) Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell 93:1231–1240PubMedCrossRefGoogle Scholar

  • Yang G, Xiao X, Rosen DG et al (2011) The biphasic role of NF-κB in progression and chemoresistance of ovarian cancer. Clin Cancer Res 17:2181–2194PubMedPubMedCentralCrossRefGoogle Scholar

  • Yin MJ, Yamamoto Y, Gaynor RB (1998) The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 396:77–80PubMedCrossRefGoogle Scholar

  • Zelarayan L, Renger A, Noack C et al (2009) NF-κB activation is required for adaptive cardiac hypertrophy. Cardiovasc Res 84:416–424PubMedCrossRefGoogle Scholar

  • Zhang JQ, Zhang JQ, Fang LZ et al (2015) Effect of oral N-acetylcysteine on COPD patients with microsatellite polymorphism in the heme oxygenase-1 gene promoter. Drug Des Devel Ther 9:6379–6387PubMedPubMedCentralCrossRefGoogle Scholar

  • Zhong H, May MJ, Jimi E et al (2002) The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1. Mol Cell 9:625–636PubMedCrossRefGoogle Scholar

  • Zhong M, Zheng K, Chen M et al (2014) Heat-shock protein 90 promotes nuclear transport of herpes simplex virus 1 capsid protein by interacting with acetylated tubulin. PLoS One 9:e99425PubMedPubMedCentralCrossRefGoogle Scholar


Source: https://link.springer.com/article/10.1007/s00005-016-0405-y


///

A 4-Year Trial of Tiotropium in Chronic Obstructive Pulmonary Azithromycin dose calculator abbreviations


Azithromycin in gynecological infections antioxidants AZITHROMYCIN 500MG TABLETS m
Azithromycin in gynecological infections antioxidants Antibiotics for Strep Throat: Benefits, Side Effects, Doses
Azithromycin in gynecological infections antioxidants Azithromycin (Zithromax) Drug Information - Indications
Azithromycin in gynecological infections antioxidants Azithromycin - Zithromax - Intravenous (IV) Dilution
Azithromycin in gynecological infections antioxidants Cached
Azithromycin in gynecological infections antioxidants Common drug dosages for rabbits - WabbitWiki
Azithromycin in gynecological infections antioxidants Digoxin (Oral Route) Description and Brand Names - Mayo Clinic

///
Дата: 05.09.2017, 20:09 / Просмотров: 73193